
Artificial Intelligence 59 (1993) 227-232 227
Elsevier

ARTINT 980

STRIPS, a retrospective

Richard E. Fikes and Nils J. Nilsson

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Introduction

During the late 1960s and early 1970s, an enthusiastic group of researchers
at the SRI AI Laboratory focused their energies on a single experimental
project in which a mobile robot was being developed that could navigate
and push objects around in a multi-room environment (Nilsson [11]) .
The project team consisted of many people over the years, including Steve
Coles, Richard Duda, Richard Fikes, Tom Garvey, Cordell Green, Peter
Hart, John Munson, Nils Nilsson, Bert Raphael, Charlie Rosen, and Earl
Sacerdoti. The hardware consisted of a mobile cart, about the size of a
small refrigerator, with touch-sensitive "feelers", a television camera, and an
optical range-finder. The cart was capable of rolling around an environment
consisting of large boxes in rooms separated by walls and doorways; it could
push the boxes from one place to another in its world. Its suite of programs
consisted of those needed for visual scene analysis (it could recognize
boxes, doorways, and room corners), for planning (it could plan sequences
of actions to achieve goals), and for converting its plans into intermediate-
level and low-level actions in its world. When the robot moved, its television
camera shook so much that it became affectionately known as "Shakey the
Robot".

The robot, the environment, and the tasks performed by the system were
quite simple by today's standards, but they were sufficiently paradigmatic
to enable initial explorations of many core issues in the development of
intelligent autonomous systems. In particular, they provided the context
and motivation for development of the A* search algorithm (Hart et al.
[7]), the STRIPS (Fikes and Nilsson [4]) and ABSTRIPS (Sacerdoti [14])
planning systems, programs for generalizing and learning macro-operators

Correspondence to: R.E. Fikes, Knowledge System Laboratory, 701 Welch Road, Bldg. C,
Palo Alto, CA 94304, USA. E-mail: fikes@ksl.stanford.edu.

0004-3702/93/$ 06.00 © 1993 -- Elsevier Science Publishers B.V. All rights reserved

228 R.E.Fikes, N.J. Nilsson

(MACROPS) (Fikes et al. [5]), "triangle tables'for plan execution (Fikes
[3]), and region-finding scene analysis programs (Duda and Hart [1]). In
this note, we focus on the development of the STRIPS (STanford Research
Institute Problem Solver) automatic plan generator and its accompanying
plan execution monitor.

The STRIPS automatic plan generator

STRIPS is often cited as providing a seminal framework for attacking
the "classical planning problem" in which the world is regarded as being
in a static state and is transformable to another static state only by a
single agent performing any of a given set of actions. The planning problem
is then to find a sequence of agent actions that will transform a given
initial world state into any of a set of given goal states. For many years,
automatic planning research was focused on that simple state-space problem
formulation, and was frequently based on the representation framework and
reasoning methods developed in the STRIPS system.

The integration of state-space heuristic search and resolution theorem
proving which is the centerpiece of the STRIPS design was consistent with
and motivated by the bringing together of our respective backgrounds and
interests at the time. Fikes had come to SRI from CMU in 1969 steeped
in a GPS-based heuristic problem solving tradition. In addition, he had just
completed work on the REF-ARF problem solver (Fikes [2]) which had a
multi-level design analogous to that of STRIPS in that it used a symbolic
interpreter (of nondeterministic procedures) to build up (constraint-based)
state descriptions that were then analyzed by a separate reasoner. Nilsson
and his colleagues at SRI had been focused on logic-based representations
and use of theorem proving techniques for problem solving. Notably, Cordell
Green had just completed development of the QA3 [6] system for his Ph.D.
thesis in which the situation calculus representation developed by McCarthy
and Hayes [10] and a resolution theorem prover was used to do (among
other things) automatic planning for the SRI robot domain.

Green's QA3 work focused our attention on the difficulties of describing
in a formal logic the effects of an action, and particularly the difficulty of
specifying those aspects of a situation that are not affected by an action
(i.e., the "frame problem"). There were no default logic or circumscription
theories to appeal to, and we did not invent them. Frustrated by these "tech-
nical" difficulties and driven by the pragmatic objective of developing an
effective plan generator, we began considering "ad hoc" representations for
robot actions and algorithms for modeling their effects, while still maintain-
ing our logic-based representation of individual states. Those considerations
produced what is arguably the key technical contribution of the STRIPS

STRIPS, a retrospective 229

work, namely the STRIPS operator representation and the algorithm for
modeling the effects of an operator based on the "STRIPS assumption" that
a plan operator affects only those aspects of the world explicitly mentioned
in the operator's deletions and additions lists.

Given that we had an effective means of representing robot actions and
their effects, we were then faced with the task of designing a plan generator.
Using GPS as our paradigmatic problem solving architecture, we needed to
define meaningful "differences" between a situation described by a set of
predicate calculus sentences and a goal situation in which a given predicate
calculus sentence is true. Once differences were defined, we needed to specify
what it meant for an operator to be "relevant" to "reducing" the difference.

Since we were using our resolution theorem prover to determine whether
a goal was true in a given state, we were faced with the problem of extracting
from the theorem prover's failed proof attempts "differences" between the
given state and one in which the goal is true. We noted that what was
needed to complete the proof were operators which would assert clauses
that resolve with the clauses at the leaf nodes of the proof tree. Thus, we
could use pattern matching techniques to find operators whose additions lists
were relevant to reducing the difference between incomplete and complete
proofs without the need for an explicit difference table.' This technique,
which was another key technical idea in the design, was essentially the same
as that used by backward chaining production rule interpreters developed
many years later. In our case, each operator corresponded to a rule of the
form

if (preconditions)
then (retract (deletions)) (assert (additions)).

In retrospect, STRIPS was extremely limited in both the scope of planning
issues it addressed and the complexity of problems it could solve. Whereas
current planning research is concerned with multiple agents operating in
dynamic environments, STRIPS assumed that only one action could occur
at any time, that nothing changed except as a result of the planned actions,
and that actions were effectively instantaneous. Also, the STRIPS "solution"
to the frame problem was vague and flawed. It was many years before the
ideas were made precise and a satisfactory formal semantics developed (see
Lifschitz [9]). Even with those limitations, the STRIPS representation and
reasoning framework was used as the basis for most automatic planning
research for many years. Perhaps the severe simplifying assumptions of

INote that the technique for finding relevant operators of matching goals to add lists is
only a heuristic since the delete lists of operators are ignored. If an operator is selected to
complete an incomplete proof and it deletes a clause used in the incomplete proof, then the
proof attempt may fail after application of the operator because of the missing clause.

230 R.E.Fikes, N.J. Nilsson

the STRIPS framework were needed in order to enable early progress to
be made on the extreme difficulties of the general automatic planning
problem. The STRIPS framework had sufficient intuitive appeal to most
researchers for them to believe that it was a viable foundation on which
to develop techniques that would be effective in more realistic models.
For example, techniques for abstract planning were developed as direct
extensions to STRIPS (Sacerdoti [14]), and even some frameworks for
planning in dynamic worlds were formulated as extensions to the static
STRIPS world (e.g., Hendrix [8] and Pednault [13]).

The STRIPS execution monitor

Given that STRIPS had produced a plan to achieve a goal state, the system
was then confronted with the problem that when Shakey executed the plan
in a real environment, the resulting state often differed from the state
expected by the planner. The differences might result from inadequacies in
the robot's world model, effectors, or both. Thus, some kind of "execution
monitor" was needed to determine after execution of each plan step whether
the plan was "on track" or whether replanning was needed. The problem
becomes interesting when one realizes that an exact match between actual
and planned states will rarely be achieved and is not needed, since most
aspects of a given situation will be irrelevant to the success of a plan. Thus,
the challenge is to determine the requirements that must be satisfied by the
state produced after each plan step in order for the remainder of the plan
to succeed.

Execution monitoring was a relatively unexplored problem at the time
this work was done because most AI problem solving research until then
had been focused on domains where actions are assumed to produce the
results described in their models (e.g., chess, puzzles, theorem proving).
Because we were working with an actual rather than a simulated robot, we
were led to consider this important additional aspect of problem solving in
the physical world.

There were basically two notable technical ideas in the STRIPS execution
monitor. The first was a simple algorithm for computing a "kernel" set of
sentences which must be true after each plan step in order for the remainder
of the plan to succeed. The algorithm regressed plan goals and operator
preconditions back through the plan to the states where they were expected
to become true and then included them in the kernel of that state and all
states through which they had been regressed.

The second notable technical idea in the execution monitor was the
monitoring algorithm based on the "triangle table" plan representation.
Given that a plan's kernels have been computed, a simple execution monitor

STRIPS, a retrospective 231

might check whether the appropriate kernel is true after each plan step,
execute the next plan step if it is, and initiate replanning if it is not.
However, that simple algorithm is deficient in two important ways: it does
not recognize situations in which the next plan step is unnecessary because
the kernel sentences it is intended to achieve are already serendipitously
true, nor does it recognize situations in which redoing some portion of the
existing plan is a viable response to the expected kernel not being true.
We designed a monitoring algorithm which overcame those deficiencies by
asking after executing each plan step whether the goal (i.e., the final kernel)
is true, then whether the kernel preceding the last plan step is true, then
whether the kernel preceding the next to last plan step is true, etc. When a
true kernel was found, the testing stopped and the appropriate action was
taken; if no kernels were true, then replanning was initiated. The algorithm
did not execute unnecessary steps, retried steps that had failed, and was non-
redundant in that it checked each kernel sentence only once as it searched
for true kernels.

The STRIPS execution monitor is a simple form of a goal-directed pro-
gram interpreter in which the goal to be achieved by each program step is
explicitly represented and monitored by the interpreter. Some current plan-
ning systems embed the monitoring algorithm in the plans they produce in
the form of conditional actions that test the kernel sentences (e.g. Nilsson's
"teleo-reactive" programs [12]). Given such embedding, execution moni-
toring occurs as a side-effect of simply executing the plan as a conventional
program.

The STRIPS monitor's preference at each step for reusing portions of
the existing plan or even to continue executing the existing plan rather than
replanning is a heuristic choice except in the rare case where the states being
produced during execution are identical to those anticipated by the planner.
The choice is heuristic because if an actual state differs from the anticipated
one, the planner may be able to produce a plan to achieve the goal from that
state which is more efficient than the original plan. The preference for using
the existing plan is based on an assumption that replanning is expensive.

Finally, note that the execution monitor takes as given the sensor feedback
from the robot after each action is executed. It does not consider, for
example, the possibility of sensor error when a kernel sentence is false nor
does it consider obtaining additional sensor data when the truth value of a
kernel sentence cannot be determined.

References

[1] R.O. Duda and P.E. Hart, Experiments in scene analysis, Tech. Note 20, Artificial
Intelligence Center, SRI International, Menlo Park, CA (1970).

232 R.E.Fikes, N.J. Nilsson

[2] R.E. Fikes, REF-ARF: a system for solving problems stated as procedures, Artif Intell. 1
(1) (1970) 27-120.

[3] R.E. Fikes, Monitored execution of robot plans produced by STRIPS, in: Proceedings
IFIP Congress 71, Ljubljana, Yugoslavia (1971).

[4] R.E. Fikes and N.J. Nilsson, STRIPS: a new approach to the application of theorem
proving to problem solving, Artif Intell. 2 (1981) 189-208.

[5] R.E. Fikes, P.E. Hart and N.J. Nilsson, Learning and executing generalized robot plans,
Artif Intell. 3 (4) (1972) 251-288.

[6] C.C. Green, Application of theorem proving to problem solving, in: Proceedings IJCAI-69,
Washington, DC (1969) 219-239.

[7] P.E. Hart, N.J. Nilsson and B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, 1EEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100-107.

[8] G. Hendrix, Modelling simultaneous actions and continuous processes, Artif Intell. 4
(1973) 145-180.

[9] V. Lifschitz, On the semantics of STRIPS, in: M.P. Georgeff and A. Lansky, eds.,
Reasoning about Actions and Plans (Morgan Kaufmann, San Mateo, CA, 1987).

[10] J. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint of
artificial intelligence, in: B. Meltzer and D. Michie, eds., Machine Intelligence 4
(Edinburgh University Press, Edinburgh, 1969) 463-502.

[11] N.J. Nilsson, Shakey the Robot, SRI Tech. Note 323, Menlo Park, CA (1984).
[12] N.J. Nilsson, Toward agent programs with circuit semantics, Robotics Laboratory Tech.

Note, Computer Science Department, Stanford University, Stanford, CA (1992).
[13] E. Pednault, Formulating multi agent dynamic world problems in the classical planning

framework, in: M.P. Georgeff and A. Lansky, eds. Reasoning about Actions and Plans
(Morgan Kaufmann, Los Altos, CA, 1987) 42-82.

[14] E. Sacerdoti, Planning in a hierarchy of abstraction spaces, Arttf. lntell. 5 (2) (1975)
115-135.

