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Introduction 

During the late 1960s and early 1970s, an enthusiastic group of researchers 
at the SRI AI Laboratory focused their energies on a single experimental 
project in which a mobile robot was being developed that could navigate 
and push objects around in a multi-room environment (Nilsson [11]) . 
The project team consisted of many people over the years, including Steve 
Coles, Richard Duda, Richard Fikes, Tom Garvey, Cordell Green, Peter 
Hart, John Munson, Nils Nilsson, Bert Raphael, Charlie Rosen, and Earl 
Sacerdoti. The hardware consisted of a mobile cart, about the size of a 
small refrigerator, with touch-sensitive "feelers", a television camera, and an 
optical range-finder. The cart was capable of rolling around an environment 
consisting of large boxes in rooms separated by walls and doorways; it could 
push the boxes from one place to another in its world. Its suite of  programs 
consisted of those needed for visual scene analysis (it could recognize 
boxes, doorways, and room corners), for planning (it could plan sequences 
of actions to achieve goals), and for converting its plans into intermediate- 
level and low-level actions in its world. When the robot moved, its television 
camera shook so much that it became affectionately known as "Shakey the 
Robot". 

The robot, the environment, and the tasks performed by the system were 
quite simple by today's standards, but they were sufficiently paradigmatic 
to enable initial explorations of many core issues in the development of 
intelligent autonomous systems. In particular, they provided the context 
and motivation for development of the A* search algorithm (Hart et al. 
[7] ), the STRIPS (Fikes and Nilsson [4] ) and ABSTRIPS (Sacerdoti [ 14] ) 
planning systems, programs for generalizing and learning macro-operators 
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(MACROPS) (Fikes et al. [5]), "triangle tables'for plan execution (Fikes 
[3]), and region-finding scene analysis programs (Duda and Hart [1]). In 
this note, we focus on the development of the STRIPS (STanford Research 
Institute Problem Solver) automatic plan generator and its accompanying 
plan execution monitor. 

The STRIPS automatic plan generator 

STRIPS is often cited as providing a seminal framework for attacking 
the "classical planning problem" in which the world is regarded as being 
in a static state and is transformable to another static state only by a 
single agent performing any of a given set of actions. The planning problem 
is then to find a sequence of agent actions that will transform a given 
initial world state into any of a set of given goal states. For many years, 
automatic planning research was focused on that simple state-space problem 
formulation, and was frequently based on the representation framework and 
reasoning methods developed in the STRIPS system. 

The integration of state-space heuristic search and resolution theorem 
proving which is the centerpiece of the STRIPS design was consistent with 
and motivated by the bringing together of our respective backgrounds and 
interests at the time. Fikes had come to SRI from CMU in 1969 steeped 
in a GPS-based heuristic problem solving tradition. In addition, he had just 
completed work on the REF-ARF problem solver (Fikes [2] ) which had a 
multi-level design analogous to that of STRIPS in that it used a symbolic 
interpreter (of nondeterministic procedures) to build up (constraint-based) 
state descriptions that were then analyzed by a separate reasoner. Nilsson 
and his colleagues at SRI had been focused on logic-based representations 
and use of theorem proving techniques for problem solving. Notably, Cordell 
Green had just completed development of the QA3 [6] system for his Ph.D. 
thesis in which the situation calculus representation developed by McCarthy 
and Hayes [10] and a resolution theorem prover was used to do (among 
other things) automatic planning for the SRI robot domain. 

Green's QA3 work focused our attention on the difficulties of describing 
in a formal logic the effects of an action, and particularly the difficulty of 
specifying those aspects of a situation that are not affected by an action 
(i.e., the "frame problem"). There were no default logic or circumscription 
theories to appeal to, and we did not invent them. Frustrated by these "tech- 
nical" difficulties and driven by the pragmatic objective of developing an 
effective plan generator, we began considering "ad hoc" representations for 
robot actions and algorithms for modeling their effects, while still maintain- 
ing our logic-based representation of individual states. Those considerations 
produced what is arguably the key technical contribution of the STRIPS 
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work, namely the STRIPS operator representation and the algorithm for 
modeling the effects of  an operator based on the "STRIPS assumption" that 
a plan operator affects only those aspects of the world explicitly mentioned 
in the operator's deletions and additions lists. 

Given that we had an effective means of representing robot actions and 
their effects, we were then faced with the task of designing a plan generator. 
Using GPS as our paradigmatic problem solving architecture, we needed to 
define meaningful "differences" between a situation described by a set of 
predicate calculus sentences and a goal situation in which a given predicate 
calculus sentence is true. Once differences were defined, we needed to specify 
what it meant for an operator to be "relevant" to "reducing" the difference. 

Since we were using our resolution theorem prover to determine whether 
a goal was true in a given state, we were faced with the problem of extracting 
from the theorem prover's failed proof attempts "differences" between the 
given state and one in which the goal is true. We noted that what was 
needed to complete the proof were operators which would assert clauses 
that resolve with the clauses at the leaf nodes of the proof tree. Thus, we 
could use pattern matching techniques to find operators whose additions lists 
were relevant to reducing the difference between incomplete and complete 
proofs without the need for an explicit difference table.'  This technique, 
which was another key technical idea in the design, was essentially the same 
as that used by backward chaining production rule interpreters developed 
many years later. In our case, each operator corresponded to a rule of the 
form 

if ( preconditions ) 
then (retract ( deletions )) (assert ( additions )). 

In retrospect, STRIPS was extremely limited in both the scope of planning 
issues it addressed and the complexity of problems it could solve. Whereas 
current planning research is concerned with multiple agents operating in 
dynamic environments, STRIPS assumed that only one action could occur 
at any time, that nothing changed except as a result of the planned actions, 
and that actions were effectively instantaneous. Also, the STRIPS "solution" 
to the frame problem was vague and flawed. It was many years before the 
ideas were made precise and a satisfactory formal semantics developed (see 
Lifschitz [9]). Even with those limitations, the STRIPS representation and 
reasoning framework was used as the basis for most automatic planning 
research for many years. Perhaps the severe simplifying assumptions of 

INote that the technique for finding relevant operators of matching goals to add lists is 
only a heuristic since the delete lists of operators are ignored. If an operator is selected to 
complete an incomplete proof and it deletes a clause used in the incomplete proof, then the 
proof attempt may fail after application of the operator because of the missing clause. 
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the STRIPS framework were needed in order to enable early progress to 
be made on the extreme difficulties of the general automatic planning 
problem. The STRIPS framework had sufficient intuitive appeal to most 
researchers for them to believe that it was a viable foundation on which 
to develop techniques that would be effective in more realistic models. 
For example, techniques for abstract planning were developed as direct 
extensions to STRIPS (Sacerdoti [14]), and even some frameworks for 
planning in dynamic worlds were formulated as extensions to the static 
STRIPS world (e.g., Hendrix [8] and Pednault [13]). 

The STRIPS execution monitor 

Given that STRIPS had produced a plan to achieve a goal state, the system 
was then confronted with the problem that when Shakey executed the plan 
in a real environment, the resulting state often differed from the state 
expected by the planner. The differences might result from inadequacies in 
the robot's world model, effectors, or both. Thus, some kind of  "execution 
monitor" was needed to determine after execution of each plan step whether 
the plan was "on track" or whether replanning was needed. The problem 
becomes interesting when one realizes that an exact match between actual 
and planned states will rarely be achieved and is not needed, since most 
aspects of  a given situation will be irrelevant to the success of  a plan. Thus, 
the challenge is to determine the requirements that must be satisfied by the 
state produced after each plan step in order for the remainder of the plan 
to succeed. 

Execution monitoring was a relatively unexplored problem at the time 
this work was done because most AI problem solving research until then 
had been focused on domains where actions are assumed to produce the 
results described in their models (e.g., chess, puzzles, theorem proving). 
Because we were working with an actual rather than a simulated robot, we 
were led to consider this important additional aspect of problem solving in 
the physical world. 

There were basically two notable technical ideas in the STRIPS execution 
monitor. The first was a simple algorithm for computing a "kernel" set of 
sentences which must be true after each plan step in order for the remainder 
of  the plan to succeed. The algorithm regressed plan goals and operator 
preconditions back through the plan to the states where they were expected 
to become true and then included them in the kernel of  that state and all 
states through which they had been regressed. 

The second notable technical idea in the execution monitor was the 
monitoring algorithm based on the "triangle table" plan representation. 
Given that a plan's kernels have been computed, a simple execution monitor 
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might check whether the appropriate kernel is true after each plan step, 
execute the next plan step if it is, and initiate replanning if it is not. 
However, that simple algorithm is deficient in two important ways: it does 
not recognize situations in which the next plan step is unnecessary because 
the kernel sentences it is intended to achieve are already serendipitously 
true, nor does it recognize situations in which redoing some portion of the 
existing plan is a viable response to the expected kernel not being true. 
We designed a monitoring algorithm which overcame those deficiencies by 
asking after executing each plan step whether the goal (i.e., the final kernel) 
is true, then whether the kernel preceding the last plan step is true, then 
whether the kernel preceding the next to last plan step is true, etc. When a 
true kernel was found, the testing stopped and the appropriate action was 
taken; if no kernels were true, then replanning was initiated. The algorithm 
did not execute unnecessary steps, retried steps that had failed, and was non- 
redundant in that it checked each kernel sentence only once as it searched 
for true kernels. 

The STRIPS execution monitor is a simple form of a goal-directed pro- 
gram interpreter in which the goal to be achieved by each program step is 
explicitly represented and monitored by the interpreter. Some current plan- 
ning systems embed the monitoring algorithm in the plans they produce in 
the form of conditional actions that test the kernel sentences (e.g. Nilsson's 
"teleo-reactive" programs [12]). Given such embedding, execution moni- 
toring occurs as a side-effect of simply executing the plan as a conventional 
program. 

The STRIPS monitor's preference at each step for reusing portions of 
the existing plan or even to continue executing the existing plan rather than 
replanning is a heuristic choice except in the rare case where the states being 
produced during execution are identical to those anticipated by the planner. 
The choice is heuristic because if an actual state differs from the anticipated 
one, the planner may be able to produce a plan to achieve the goal from that 
state which is more efficient than the original plan. The preference for using 
the existing plan is based on an assumption that replanning is expensive. 

Finally, note that the execution monitor takes as given the sensor feedback 
from the robot after each action is executed. It does not consider, for 
example, the possibility of sensor error when a kernel sentence is false nor 
does it consider obtaining additional sensor data when the truth value of a 
kernel sentence cannot be determined. 
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